Software
Se conoce como software1 al soporte lógico de un sistema informático, que comprende el conjunto de los componentes lógicos necesarios que hacen posible la realización de tareas específicas, en contraposición a los componentes físicos que son llamados hardware. La interacción entre el software y el hardware hace operativo un ordenador (u otro dispositivo), es decir, el Software envía instrucciones que el Hardware ejecuta, haciendo posible su funcionamiento.
Los componentes lógicos incluyen, entre muchos otros, las aplicaciones informáticas, tales como el procesador de texto, que permite al usuario realizar todas las tareas concernientes a la edición de textos; el llamado software de sistema, tal como el sistema operativo, que básicamente permite al resto de los programas funcionar adecuadamente, facilitando también la interacción entre los componentes físicos y el resto de las aplicaciones, y proporcionando una interfaz con el usuario.2
El software en su gran mayoría, está escrito en lenguajes de programación de alto nivel, ya que son más fáciles y eficientes para que los programadores los usen, porque son más cercanos al Lenguaje natural respecto del lenguaje de máquina.3 Los lenguajes de alto nivel se traducen a lenguaje de máquina utilizando un compilador o un intérprete, o bien una combinación de ambos. El software también puede estar escrito en lenguaje ensamblador , que es de bajo nivel y tiene una alta correspondencia con las instrucciones de lenguaje máquina; se traduce al lenguaje de la máquina utilizando un ensamblador.
El anglicismo software es el más ampliamente difundido al referirse a este concepto, especialmente en la jerga técnica; en tanto que el término sinónimo «logicial», derivado del término francés logiciel, es utilizado mayormente en países y zonas de influencia francesa.
Etimología[editar]
Software (pronunciación AFI:[ˈsɒftwɛəʳ]) es una palabra proveniente del inglés, que en español no posee una traducción adecuada al contexto, por lo cual se la utiliza asiduamente sin traducir y así fue admitida por la Real Academia Española (RAE).4 Aunque puede no ser estrictamente lo mismo, suele sustituirse por expresiones tales como programas (informáticos) o aplicaciones (informáticas) o soportes lógicos.5
Software es lo que se denomina producto en ingeniería de software.6
Definición de software[editar]
Existen varias definiciones similares aceptadas para software, pero probablemente la más formal sea la siguiente:
Es el conjunto de los programas de cómputo, procedimientos, reglas, documentación y datos asociados, que forman parte de las operaciones de un sistema de computación.
Considerando esta definición, el concepto de software va más allá de los programas de computación en sus distintos estados: código fuente, binario o ejecutable; también su documentación, los datos a procesar e incluso la información de usuario forman parte del software: es decir, abarca todo lo intangible, todo lo «no físico» relacionado.
El término software fue usado por primera vez en este sentido por John W. Tukey en 1957. En la ingeniería de software y las ciencias de la computación, el software es toda la información procesada por los sistemas informáticos: programas y datos.
El concepto de leer diferentes secuencias de instrucciones (programa) desde la memoria de un dispositivo para controlar los cálculos fue introducido por Charles Babbage como parte de su máquina diferencial. La teoría que forma la base de la mayor parte del software moderno fue propuesta por Alan Turing en su ensayo de 1936, «Los números computables», con una aplicación al problema de decisión.
Clasificación del software[editar]
Si bien esta distinción es, en cierto modo, arbitraria, y a veces confusa, a los fines prácticos se puede clasificar al software en tres tipos:
- Software de sistema: Su objetivo es desvincular adecuadamente al usuario y al programador de los detalles del sistema informático en particular que se use, aislándolo especialmente del procesamiento referido a las características internas de: memoria, discos, puertos y dispositivos de comunicaciones, impresoras, pantallas, teclados, etc. El software de sistema le procura al usuario y programador adecuadas interfaces de alto nivel, controladores, herramientas y utilidades de apoyo que permiten el mantenimientodel sistema global. Incluye entre otros:
- Software de programación: Es el conjunto de herramientas que permiten al programador desarrollar programas de informática, usando diferentes alternativas y lenguajes de programación, de una manera práctica. Incluyen en forma básica:
- Editores de texto
- Compiladores
- Intérpretes
- Enlazadores
- Depuradores
- Entornos de desarrollo integrados (IDE): Agrupan las anteriores herramientas, usualmente en un entorno visual, de forma tal que el programador no necesite introducir múltiples comandos para compilar, interpretar, depurar, etc. Habitualmente cuentan con una avanzada interfaz gráfica de usuario (GUI).
- Software de aplicación: Es aquel que permite a los usuarios llevar a cabo una o varias tareas específicas, en cualquier campo de actividad susceptible de ser automatizado o asistido, con especial énfasis en los negocios. Incluye entre muchos otros:
- Aplicaciones para Control de sistemas y automatización industrial
- Aplicaciones ofimáticas
- Software educativo
- Software empresarial
- Bases de datos
- Telecomunicaciones (por ejemplo Internet y toda su estructura lógica)
- Videojuegos
- Software médico
- Software de cálculo numérico y simbólico.
- Software de diseño asistido (CAD)
- Software de control numérico (CAM)
Proceso de creación del software[editar]
Se define como «proceso» al conjunto ordenado de pasos a seguir para llegar a la solución de un problema u obtención de un producto, en este caso particular, para lograr un producto software que resuelva un problema específico.
El proceso de creación de software puede llegar a ser muy complejo, dependiendo de su porte, características y criticidad del mismo. Por ejemplo la creación de un sistema operativo es una tarea que requiere proyecto, gestión, numerosos recursos y todo un equipo disciplinado de trabajo. En el otro extremo, si se trata de un sencillo programa (por ejemplo, la resolución de una ecuación de segundo orden), éste puede ser realizado por un solo programador (incluso aficionado) fácilmente. Es así que normalmente se dividen en tres categorías según su tamaño (líneas de código) o costo: de «pequeño», «mediano» y «gran porte». Existen varias metodologías para estimarlo, una de las más populares es el sistema COCOMO que provee métodos y un software (programa) que calcula y provee una aproximación de todos los costos de producción en un «proyecto software» (relación horas/hombre, costo monetario, cantidad de líneas fuente de acuerdo a lenguaje usado, etc.).
Considerando los de gran porte, es necesario realizar complejas tareas, tanto técnicas como de gerencia, una fuerte gestión y análisis diversos (entre otras cosas), la complejidad de ello ha llevado a que desarrolle una ingeniería específica para tratar su estudio y realización: es conocida como ingeniería de Software.
En tanto que en los de mediano porte, pequeños equipos de trabajo (incluso un avezado analista-programador solitario) pueden realizar la tarea. Aunque, siempre en casos de mediano y gran porte (y a veces también en algunos de pequeño porte, según su complejidad), se deben seguir ciertas etapas que son necesarias para la construcción del software. Tales etapas, si bien deben existir, son flexibles en su forma de aplicación, de acuerdo a la metodología o proceso de desarrollo escogido y utilizado por el equipo de desarrollo o por el analista-programador solitario (si fuere el caso).
Los «procesos de desarrollo de software» poseen reglas preestablecidas, y deben ser aplicados en la creación del software de mediano y gran porte, ya que en caso contrario lo más seguro es que el proyecto no logre concluir o termine sin cumplir los objetivos previstos, y con variedad de fallos inaceptables (fracasan, en pocas palabras). Entre tales «procesos» los hay ágiles o livianos (ejemplo XP), pesados y lentos (ejemplo RUP), y variantes intermedias. Normalmente se aplican de acuerdo al tipo y porte del software a desarrollar, a criterio del líder (si lo hay) del equipo de desarrollo. Algunos de esos procesos son Programación Extrema (en inglés eXtreme Programming o XP), Proceso Unificado de Rational (en inglés Rational Unified Process o RUP), Feature Driven Development (FDD), etc.
Cualquiera sea el «proceso» utilizado y aplicado al desarrollo del software (RUP, FDD, XP, etc), y casi independientemente de él, siempre se debe aplicar un «modelo de ciclo de vida».8
Se estima que, del total de proyectos software grandes emprendidos, un 28 % fracasan, un 46 % caen en severas modificaciones que lo retrasan y un 26 % son totalmente exitosos.9
Cuando un proyecto fracasa, rara vez es debido a fallas técnicas, la principal causa de fallos y fracasos es la falta de aplicación de una buena metodología o proceso de desarrollo. Entre otras, una fuerte tendencia, desde hace pocas décadas, es mejorar las metodologías o procesos de desarrollo, o crear nuevas y concientizar a los profesionales de la informática a su utilización adecuada. Normalmente los especialistas en el estudio y desarrollo de estas áreas (metodologías) y afines (tales como modelos y hasta la gestión misma de los proyectos) son los ingenieros en software, es su orientación. Los especialistas en cualquier otra área de desarrollo informático (analista, programador, Lic. en informática, ingeniero en informática, ingeniero de sistemas, etc.) normalmente aplican sus conocimientos especializados pero utilizando modelos, paradigmas y procesos ya elaborados.
Es común para el desarrollo de software de mediano porte que los equipos humanos involucrados apliquen «metodologías propias», normalmente un híbrido de los procesos anteriores y a veces con criterios propios.
El proceso de desarrollo puede involucrar numerosas y variadas tareas,8 desde lo administrativo, pasando por lo técnico y hasta la gestión y el gerenciamiento. Pero, casi rigurosamente, siempre se cumplen ciertas etapas mínimas; las que se pueden resumir como sigue:
- Captura, elicitación,10 especificación y análisis de requisitos (ERS)
- Diseño
- Codificación
- Pruebas (unitarias y de integración)
- Instalación y paso a producción
- Mantenimiento
En las anteriores etapas pueden variar ligeramente sus nombres, o ser más globales, o contrariamente, ser más refinadas; por ejemplo indicar como una única fase (a los fines documentales e interpretativos) de «análisis y diseño»; o indicar como «implementación» lo que está dicho como «codificación»; pero en rigor, todas existen e incluyen, básicamente, las mismas tareas específicas.
En el apartado 4 del presente artículo se brindan mayores detalles de cada una de las etapas indicadas.
Modelos de proceso o ciclo de vida[editar]
Para cada una de las fases o etapas listadas en el ítem anterior, existen sub-etapas (o tareas). El modelo de proceso o modelo de ciclo de vida utilizado para el desarrollo, define el orden de las tareas o actividades involucradas,8 también define la coordinación entre ellas, y su enlace y realimentación. Entre los más conocidos se puede mencionar: modelo en cascada o secuencial, modelo espiral, modelo iterativo incremental. De los antedichos hay a su vez algunas variantes o alternativas, más o menos atractivas según sea la aplicación requerida y sus requisitos.9
Modelo cascada[editar]
Este, aunque es más comúnmente conocido como modelo en cascada es también llamado «modelo clásico», «modelo tradicional» o «modelo lineal secuencial».
El modelo en cascada puro «difícilmente se utiliza tal cual», pues esto implicaría un previo y absoluto conocimiento de los requisitos, la no volatilidad de los mismos (o rigidez) y etapas subsiguientes libres de errores; ello sólo podría ser aplicable a escasos y pequeños sistemas a desarrollar. En estas circunstancias, el paso de una etapa a otra de las mencionadas sería sin retorno, por ejemplo pasar del diseño a la codificación implicaría un diseño exacto y sin errores ni probable modificación o evolución: «codifique lo diseñado sin errores, no habrá en absoluto variantes futuras». Esto es utópico; ya que intrínsecamente «el software es de carácter evolutivo»,11 cambiante y difícilmente libre de errores, tanto durante su desarrollo como durante su vida operativa.8
Algún cambio durante la ejecución de una cualquiera de las etapas en este modelo secuencial implicaría reiniciar desde el principio todo el ciclo completo, lo cual redundaría en altos costos de tiempo y desarrollo. La Figura 2 muestra un posible esquema del modelo en cuestión.8
Sin embargo, el modelo cascada en algunas de sus variantes es uno de los actualmente más utilizados,12 por su eficacia y simplicidad, más que nada en software de pequeño y algunos de mediano porte; pero nunca (o muy rara vez) se lo usa en su "forma pura", como se dijo anteriormente. En lugar de ello, siempre se produce alguna realimentaciónentre etapas, que no es completamente predecible ni rígida; esto da oportunidad al desarrollo de productos software en los cuales hay ciertas incertezas, cambios o evoluciones durante el ciclo de vida. Así por ejemplo, una vez capturados y especificados los requisitos (primera etapa) se puede pasar al diseño del sistema, pero durante esta última fase lo más probable es que se deban realizar ajustes en los requisitos (aunque sean mínimos), ya sea por fallas detectadas, ambigüedades o bien por que los propios requisitos han cambiado o evolucionado; con lo cual se debe retornar a la primera o previa etapa, hacer los reajustes pertinentes y luego continuar nuevamente con el diseño; esto último se conoce como realimentación. Lo normal en el modelo cascada es entonces la aplicación del mismo con sus etapas realimentadas de alguna forma, permitiendo retroceder de una a la anterior (e incluso poder saltar a varias anteriores) si es requerido.
De esta manera se obtiene el «modelo cascada realimentado», que puede ser esquematizado como lo ilustra la Figura 3.
Lo dicho es, a grandes rasgos, la forma y utilización de este modelo, uno de los más usados y populares.8 El modelo cascada realimentado resulta muy atractivo, hasta ideal, si el proyecto presenta alta rigidez (pocos cambios, previsto no evolutivo), los requisitos son muy claros y están correctamente especificados.12
Hay más variantes similares al modelo: refino de etapas (más etapas, menores y más específicas) o incluso mostrar menos etapas de las indicadas, aunque en tal caso la faltante estará dentro de alguna otra. El orden de esas fases indicadas en el ítem previo es el lógico y adecuado, pero adviértase, como se dijo, que normalmente habrá realimentación hacia atrás.
El modelo lineal o en cascada es el paradigma más antiguo y extensamente utilizado, sin embargo las críticas a él (ver desventajas) han puesto en duda su eficacia. Pese a todo, tiene un lugar muy importante en la ingeniería de software y continúa siendo el más utilizado; y siempre es mejor que un enfoque al azar.12
Desventajas del modelo cascada:8
- Los cambios introducidos durante el desarrollo pueden confundir al equipo profesional en las etapas tempranas del proyecto. Si los cambios se producen en etapa madura (codificación o prueba) pueden ser catastróficos para un proyecto grande.
- No es frecuente que el cliente o usuario final explicite clara y completamente los requisitos (etapa de inicio); y el modelo lineal así lo requiere. La incertidumbre natural en los comienzos es luego difícil de acomodar.12
- El cliente debe tener paciencia ya que el software no estará disponible hasta muy avanzado el proyecto. Un error importante detectado por el cliente (en fase de operación) puede ser desastroso, implicando reinicio del proyecto, con altos costos.
Modelos evolutivos
El software evoluciona con el tiempo.1311 Los requisitos del usuario y del producto suelen cambiar conforme se desarrolla el mismo. Las fechas de mercado y la competencia hacen que no sea posible esperar a poner en el mercado un producto absolutamente completo, por lo que se aconseja introducir una versión funcional limitada de alguna forma para aliviar las presiones competitivas.
En esas u otras situaciones similares, los desarrolladores necesitan modelos de progreso que estén diseñados para acomodarse a una evolución temporal o progresiva, donde los requisitos centrales son conocidos de antemano, aunque no estén bien definidos a nivel detalle.
En el modelo cascada y cascada realimentado no se tiene demasiado en cuenta la naturaleza evolutiva del software,13 se plantea como estático, con requisitos bien conocidos y definidos desde el inicio.8
Los evolutivos son modelos iterativos, permiten desarrollar versiones cada vez más completas y complejas, hasta llegar al objetivo final deseado; incluso evolucionar más allá, durante la fase de operación.
Los modelos «iterativo incremental» y «espiral» (entre otros) son dos de los más conocidos y utilizados del tipo evolutivo.12
Modelo iterativo incremental[editar]
En términos generales, se puede distinguir, en la figura 4, los pasos generales que sigue el proceso de desarrollo de un producto software. En el modelo de ciclo de vida seleccionado, se identifican claramente dichos pasos. La descripción del sistema es esencial para especificar y confeccionar los distintos incrementos hasta llegar al producto global y final. Las actividades concurrentes (especificación, desarrollo y validación) sintetizan el desarrollo pormenorizado de los incrementos, que se hará posteriormente.
El diagrama de la figura 4 muestra en forma muy esquemática, el funcionamiento de un ciclo iterativo incremental, el cual permite la entrega de versiones parciales a medida que se va construyendo el producto final.8 Es decir, a medida que cada incremento definido llega a su etapa de operación y mantenimiento. Cada versión emitida incorpora a los anteriores incrementos las funcionalidades y requisitos que fueron analizados como necesarios.
El incremental es un modelo de tipo evolutivo que está basado en varios ciclos cascada realimentados aplicados repetidamente, con una filosofía iterativa.12 En la figura 5 se muestra un refino del diagrama previo, bajo un esquema temporal, para obtener finalmente el esquema del modelo de ciclo de vida iterativo incremental, con sus actividades genéricas asociadas. Aquí se observa claramente cada ciclo cascada que es aplicado para la obtención de un incremento; estos últimos se van integrando para obtener el producto final completo. Cada incremento es un ciclo cascada realimentado, aunque, por simplicidad, en la figura 5 se muestra como secuencial puro.
Se observa que existen actividades de desarrollo (para cada incremento) que son realizadas en paralelo o concurrentemente, así por ejemplo, en la Figura, mientras se realiza el diseño detalle del primer incremento ya se está realizando en análisis del segundo. La Figura 5 es sólo esquemática, un incremento no necesariamente se iniciará durante la fase de diseño del anterior, puede ser posterior (incluso antes), en cualquier tiempo de la etapa previa. Cada incremento concluye con la actividad de «operación y mantenimiento» (indicada como «Operación» en la figura), que es donde se produce la entrega del producto parcial al cliente. El momento de inicio de cada incremento es dependiente de varios factores: tipo de sistema; independencia o dependencia entre incrementos (dos de ellos totalmente independientes pueden ser fácilmente iniciados al mismo tiempo si se dispone de personal suficiente); capacidad y cantidad de profesionales involucrados en el desarrollo; etc.
Bajo este modelo se entrega software «por partes funcionales más pequeñas», pero reutilizables, llamadas incrementos. En general cada incremento se construye sobre aquel que ya fue entregado.8
Como se muestra en la Figura 5, se aplican secuencias Cascada en forma escalonada, mientras progresa el tiempo calendario. Cada secuencia lineal o Cascada produce un incremento y a menudo el primer incremento es un sistema básico, con muchas funciones suplementarias (conocidas o no) sin entregar.
El cliente utiliza inicialmente ese sistema básico, intertanto, el resultado de su uso y evaluación puede aportar al plan para el desarrollo del/los siguientes incrementos (o versiones). Además también aportan a ese plan otros factores, como lo es la priorización (mayor o menor urgencia en la necesidad de cada incremento en particular) y la dependencia entre incrementos (o independencia).
Luego de cada integración se entrega un producto con mayor funcionalidad que el previo. El proceso se repite hasta alcanzar el software final completo.
Siendo iterativo, con el modelo incremental se entrega un producto parcial pero completamente operacional en cada incremento, y no una parte que sea usada para reajustar los requisitos (como si ocurre en el modelo de construcción de prototipos).12
El enfoque incremental resulta muy útil cuando se dispone de baja dotación de personal para el desarrollo; también si no hay disponible fecha límite del proyecto por lo que se entregan versiones incompletas pero que proporcionan al usuario funcionalidad básica (y cada vez mayor). También es un modelo útil a los fines de versiones de evaluación.
Nota: Puede ser considerado y útil, en cualquier momento o incremento incorporar temporalmente el paradigma MCP como complemento, teniendo así una mixtura de modelos que mejoran el esquema y desarrollo general.
Software
Reviewed by Ana Guzman
on
agosto 23, 2019
Rating:
No hay comentarios.: